18.04.2017 08:56:43
|
IRW-News: Sovereign Metals Limited: Sovereign Metals Limited: MALINGUNDE: Die weltweit größte gemeldete in Saprolith gelagerte Graphitressource
IRW-PRESS: Sovereign Metals Limited: Sovereign Metals Limited: MALINGUNDE: Die weltweit größte gemeldete in Saprolith gelagerte Graphitressource
MALINGUNDE: Die weltweit größte gemeldete in Saprolith gelagerte Graphitressource
Sovereign Metals Limited (das Unternehmen oder Sovereign) freut sich, die erste JORC-konforme Mineralressourcenschätzung für das Projekt Malingunde in Malawi bekannt zu geben.
Die Mineralressourcenschätzung bestätigt die globale Bedeutung der Graphitlagerstätte Malingunde und bietet die Grundlage für einen natürlichen Flockengraphit-Abbaubetrieb mit potenziell geringem Investitions- und sehr geringem Betriebsaufwand, der sich auf den weichen in Saprolith (Tonerde) gelagerten Anteil der Lagerstätte konzentriert.
Saprolith-Mineralressourcenschätzung (angezeigt + abgeleitet):
28,8 Mio t mit 7,1 % TGC (Cutoff-Wert 4,0 % TGC)
einschließlich hochgradiger Anteil:
8,9 Mio. t mit 9,9 % TGC (Cutoff-Wert 7,5 % TGC)
Wichtigste Ergebnisse:
- Malingunde als weltweit größte gemeldete in weichen Saprolith gelagerte Graphitressource1 bestätigt.
- Hochgradiger Anteil im Umfang von 8,9 Mio. t mit 9,9 % TGC (Total Carbon Content; Gesamtkohlenstoffgehalt) wird im Mittelpunkt der anstehenden Rahmenbewertung stehen.
- 80% der gesamten Saprolithressource und 80 % des hochgradigen Anteils als angezeigte Mineralressourcen eingestuft.
- Das gesamte weiche Saprolithmaterial befindet sich innerhalb eines Bereichs von 30 Metern von der Oberfläche und kann durch einfache Grabungen mit sehr geringem Erz-Abraum-Verhältnis abgebaut werden, was deutlich geringere Abbaukosten während der Lebensdauer der Mine (LOM) bedeuten sollte.
- Das Saprolithmaterial muss nicht zerkleinert oder zermahlen werden, woraus sich im Vergleich zu Festgesteinslagerstätte wesentlich niedrigere Verarbeitungskosten ergeben.
- Die weitläufige, 3.788 km2 große Liegenschaft enthält zahlreiche andere Saprolith-Zielgebiete enthält, die zwar abgegrenzt, jedoch noch nicht mittels Bohrungen untersucht wurden, was auf zusätzliches und beträchtliches Explorationspotenzial hinweist.
Dr. Julian Stephens, Managing Director von Sovereign, sagte dazu: Die erste Mineralressourcenschätzung hat unsere Erwartungen bei weitem übertroffen und bestätigt, dass Malingunde eine erstklassige Graphitlagerstätte ist. Der separate hochgradige Anteil der Ressource wird im Mittelpunkt der bevorstehenden Rahmenbewertung des Unternehmens stehen. Angesichts dieser herausragenden Ressourcenbasis kann das Unternehmen nun die Durchführung dieser Rahmenbewertung in Angriff nehmen und dabei die inhärenten Vorteile des Projekts wie etwa sein Potenziel für einen Betrieb mit sehr geringem Betriebs- und niedrigem Investitionsaufwand und Spitzenmargen nutzen.
ANFRAGEN: --
Dr. Julian Stephens - Managing Director-+618 9322 6322
Einführung
In Saprolith gelagerte Graphitlagerstätten sind dank ihres im Vergleich zu in Festgestein gelagerten Graphitproduktionsstätten geringeren Investitionsaufwands und niedrigeren Betriebskosten gefragt.
Sovereign erkundete das Gebiet Malingunde im Jahr 2015 und 2016 und entdeckte dabei die weltweit größte gemeldete in Saprolith gelagerte Graphitressource.
Die Lagerstätte Maligunde weist folgende Vorteile auf:
- Ein hochgradiger Kern mit etwa 10 % TGC, der im Mittelpunkt der bevorstehenden Rahmenbewertung stehen wird;
- Sehr weiches, durch einfache Grabungen abbaubares Material für die gesamte Lebensdauer der Mine mit einem sehr geringen Erz-Abraum-Verhältnis, woraus sich sehr geringe Abbaukosten ergeben;
- Primäre Zerkleinerung und Mahlung nicht notwendig, was deutliche Einsparungen beim Investitionsbedarf und den Betriebskosten bedeutet;
- Nähe zur Hauptstadt Malawis bedeutet Zugang zu bestehender Infrastruktur: Eisenbahn, Wasser, Strom & Arbeitskräfte;
- Mit einem Spitzenkonzentrat (Best in Class) in puncto Flockengröße und Gehalt kann ein Spitzenpreis erzielt werden.
Die obengenannten Vorteile zeigen insgesamt, dass Malingunde ein potenziell erstklassiges Projekt mit geringem Investitionsbedarf, niedrigen Betriebskosten und hohen Einnahmen pro Tonne Konzentrat ist, was voraussichtlich einem margenstarken Betrieb entspricht.
Mineralressourcenschätzung
Die Mineralressourcenschätzung für Malingunde wurde von CSA Global angefertigt und wird gemäß JORC Code (Ausgabe 2012) gemeldet.
Bei Anwendung eines geringeren Cutoff-Werts von 4 % TGC umfasst die Mineralressourcenschätzung (angezeigt + abgeleitet):
- 28,8 Mio. Tonnen Saprolith mit 7,1 % TGC;
- 17,0 Mio. Tonnen verwittertes Grundgestein mit 7,0 % TGC;
- 19,3 Mio. Tonnen frisches Gestein mit 7,0 % TGC.
Die Mineralressource beinhaltet insgesamt 65,1 Millionen Tonnen mit 7,1 % TGC (Saprolith, verwittertes Grundgestein und frisches Gestein; 80 % angezeigt + 20 % abgeleitet).
Bei Anwendung eines höheren Cutoff-Werts von 7,5% TGC umfasst der Saprolith-Anteil der Ressource 8,9 Millionen Tonnen mit 9,9 % TGC (ebenfalls 80 % angezeigt + 20 % abgeleitet).
Der Saprolith-Anteil der Mineralressource befindet sich vollständig innerhalb eines Bereichs von 30 Metern von der natürlichen Erdoberfläche. Das Unternehmen beabsichtigt, den hochgradigen Saprolith-Anteil der Mineralressourcen in den Mittelpunkt der bevorstehenden Rahmenbewertung zu stellen. Die 8,9 Millionen Tonnen hochgradiges Material sollten den Erwartungen zufolge Einsatzmaterial für einen im Zuge der Studie zu bewertenden Minenbetrieb mit einer beachtlichen Lebensdauer liefern.
Der zuständige Sachverständige und das Unternehmen vertreten die Ansicht, dass angemessene Aussichten auf die eventuelle wirtschaftliche Förderung der Mineralressource bestehen. Berücksichtigt wurden unter anderem die relative Nähe der Mineralisierung zur Oberfläche, woraus sich eine Eignung für den Tagebau ergibt, und die bestehende Infrastruktur unweit des Projekts einschließlich Eisenbahn, Strom, Arbeitskräfte und Wasser. Die bisherigen metallurgischen Testarbeiten zur Flockengrößenverteilung und Reinheit sprechen nach Einschätzung des Sachverständigen und des Unternehmens für die Marktfähigkeit eines Konzentrats.
http://www.irw-press.at/prcom/images/messages/2017/39475/170418 Malingunde JORC Resource April 2017_Final_DEprcom.001.png
Tabelle 1. Erste JORC-konforme Mineralressourcenschätzung für Malingunde unter Anwendung von Cutoff-Werten von 4,0 % und 7,5 % TGC
http://www.irw-press.at/prcom/images/messages/2017/39475/170418 Malingunde JORC Resource April 2017_Final_DEprcom.002.png
Abbildung 1. Dreidimensionale Schrägansicht des Blockmodells für die Malingunde-Mineralressourcenschätzung
http://www.irw-press.at/prcom/images/messages/2017/39475/170418 Malingunde JORC Resource April 2017_Final_DEprcom.003.png
Abbildung 2. Querschnitt bei 8,437,000mN, der die bei der Mineralressourcenschätzung verwendeten Blöcke und die TGC-Gehaltsbereiche anzeigt
Die vollständige Pressemeldung finden Sie hier: http://www.asx.com.au/asxpdf/20170418/pdf/43hkny1xxq8mq0.pdf
Die Ausgangssprache (in der Regel Englisch), in der der Originaltext veröffentlicht wird, ist die offizielle, autorisierte und rechtsgültige Version. Diese Übersetzung wird zur besseren Verständigung mitgeliefert. Die deutschsprachige Fassung kann gekürzt oder zusammengefasst sein. Es wird keine Verantwortung oder Haftung: für den Inhalt, für die Richtigkeit, der Angemessenheit oder der Genauigkeit dieser Übersetzung übernommen. Aus Sicht des Übersetzers stellt die Meldung keine Kauf- oder Verkaufsempfehlung dar! Bitte beachten Sie die englische Originalmeldung auf www.sedar.com, www.sec.gov, www.asx.com.au/ oder auf der Firmenwebsite!
Summary of Resource Estimate and Reporting Criteria
The following is a summary of the pertinent information used in the Mineral Resource Estimate (MRE) with full details provided in Table 1 included as Appendix A.
Geology and Geological Interpretation
The Malingunde area is underlain by Neo-Proterozoic to Cambrian semi-pelitic paragneisses of the Mchinji Group. Lithologies include kyanite, biotite, garnet, pyrrhotite and graphite bearing gneisses and schists.
Malingunde flake graphite deposit strikes north-west, dipping between 25° and 50 degrees° to the north- east. It is currently modelled as three zones of mineralisation, with a depth extent of 50 m, a strike length of 4,500 m and a plan width varying between 50 and 230 m.
Malingunde occurs in a topographically flat area west of Malawis capital known as the Lilongwe Plain. Here, a deep tropical weathering profile is preserved. A typical profile from top to base is generally ferruginous pedolith (FERP, 0-4m), mottled zone (MOTT, 4-7m), pallid saprolite (PSAP, 7-9m), saprolite (SAPL, 9-25m), saprock (SAPR, 25-35m) and fresh rock (FRESH >35m). For the purposes of the MRE, all units from saprolite and above are included under the heading saprolite. This is justified because all are soft and free-dig, and all have consistent and similar metallurgical characteristics.
Within the Malingunde deposit itself, high-grade graphite gneisses are interlayered and separated by biotite and locally kyanite bearing gneisses. Two discrete, internal high grade graphite zones exist and appear to be slightly oblique to the overall trend of the mineralisation (Figure 1).
Further high-grade saprolite-hosted graphite mineralisation has been discovered in hand auger drilling along strike over 1km to the south-east of the resource area and is yet to be followed up. Regionally, the Company controls a large, prospective ground package totalling 3,788km2 within which six additional saprolite-hosted prospects have been located.
Drilling and Sampling Techniques
The MRE is based upon data obtained from 13 diamond core (DD) drill holes (432.39 m), 170 aircore (AC) holes (3,352 m) and 212 hand auger (HA) holes (1,499 m) drilled across the three deposits. Five (5) pairs of AC/DD and eight (8) pairs of AC/HA twinned holes are included in the drilling totals.
HA holes are located on east-west transects across the entire strike of the modelled deposit spaced nominally at 200 m x 20 m with infill spaced at 10 m along section. AC holes were generally drilled at 200 m x 20 m along existing HA transects with infill of 100 m x 20 m over the northern and southern portions of the deposit. DD holes were drilled on existing HA transects spaced between 200 m and 400 m north-south along the strike extent of the deposit. All HA holes were drilled vertically whilst the majority of the AC and DD holes were angled, designed to intersect broadly orthogonal to the shallow-moderate east dipping mineralisation.
The majority of HA and all AC/DD drill hole collars were surveyed using a differential global positioning system (DGPS) to centimetre accuracy. All DD holes were down-hole surveyed using a Reflex Ez-Trak multi-shot survey tool at 30m intervals down hole. Owing to their shallow depths (maximum 12 m), HA holes were not downhole surveyed. AC holes were not routinely down-hole surveyed, however 9 holes (5%) were surveyed to verify the amount of downhole deviation.
HA and AC drill samples were geologically logged, recording relevant data to a set template at 1m intervals. DD core was geologically logged based on geological intervals. DD core was also geotechnically logged and digitally photographed.
DD core (PQ3) was quarter cut and sampled according to geological intervals. HA samples were composited on geological intervals (2-3m) in the field, and submitted for Total Graphitic Carbon (TGC) analysis. AC samples were sampled at 1-metre in the SOIL, FERP, MOTT weathering zones and composited nominally at 2-metres in the PSAP, SAPL, SAPR, FRESH weathering zones. Field quality assurance procedures were employed, including the use of analytical standards, coarse blanks and duplicates.
Sample Analysis Method
Samples were shipped to Intertek sample preparation laboratory in Johannesburg or Perth. Upon receipt of the sample, the laboratory prepared ~100g pulp samples for shipment (in the case of Johannesburg) to Intertek Perth where they were analysed. A 0.2g charge is analysed for TGC using an Eltra carbon analyser resistance furnace.
Classification Criteria
Classification of the MRE was carried out taking into account the geological understanding of the deposit, quality of the samples, bulk density data and drill hole spacing, supported by metallurgical test results that indicate general product marketability.
The MRE is classified as a combination of Indicated and Inferred, with geological evidence sufficient to assume geological and grade continuity in the Indicated volumes. All available data was assessed and the Competent Persons relative confidence in the data was used to assist in the classification of the Mineral Resource.
Resource Estimation Methodology
TGC wireframe interpretations were based upon a lower cut-off of 4% TGC, which is equivalent to the graphitic gneiss domain boundary, from geological logging of HA/AC/DD drill holes.
The Mineral Resource block model consists of 3 zones of TGC mineralisation, with 1 major zone and 2 minor zones, with respect to strike extent. Mineralisation domains were encapsulated by means of 3D wireframed envelopes. Domains were extrapolated along strike or down plunge to half a section spacing. Internal waste units were modelled within the graphitic gneiss mineralisation envelopes to define barren domains.
No top cutting was applied to constrain extreme grade values because the TGC grade distribution does not warrant their use.
All drill hole assay samples were composited to 2 m intervals. All assayed HA/AC/DD drill hole intervals were utilised in the grade interpolation.
Grade estimation was by ordinary kriging (OK). A minimum of 8 and maximum of 16 composited samples were used in any one block estimate for all domains. A maximum of 5 composited samples per drill hole were used in any one block estimate. The PSAP, SAPL, SAPR and the top portion of the FRESH domain (pseudo transitional material) were combined into one estimation domain. The FERP and MOTT weathering zones were estimated as a separate single domain.
The grade model was validated by 1) creating slices of the model and comparing to drill hole samples on the same slice; 2) swath plots comparing average block grades with average sample grades on nominated easting, northing and RL slices; 3) mean grades per domain for estimated blocks and flagged drill hole samples; and 4) cross sections with block model and drill hole data colour coded in like manner.
Cut-off Grades
The MRE has been reported using lower cut-off grade of 4.0% and 7.5% TGC, which is consistent with the grade used to report previous MREs for this style of mineralisation.
Mining and Metallurgical Methods and Parameters
No selective mining units were assumed in this resource model. No depletion of the Mineral Resource due to mining activity was required due to no mining having occurred historically.
Sovereign have announced several sets of metallurgical results to the ASX (7th September 2016; 23rd November 2016; 27th February 2017 and 20th March 2017), relating to flake size distribution and purity of graphite concentrate. Metallurgical testwork is ongoing.
Sovereign engaged SGS Canada to conduct an initial bench scale laboratory flotation testwork program on drill samples obtained from the Malingunde flake graphite deposit. The main objective was to investigate the metallurgical response of shallow saprolitic mineralization (PSAP+SAPL) and the testwork was performed on two master composites samples produced from fifteen drill holes of located in the northern and central part of the deposit. The majority of the testwork was performed using two master composite samples described as north composite and southern composite from shallow auger drill samples. The testwork was largely based on the flowsheet previously developed for weathered material from Sovereigns Duwi and graphite deposit, located 40 km to the north-east.
In addition two separate master composites of the mottled zone (MOTT) using intervals from the same HA drill holes were produced and tested using the same flowsheet conditions as the saprolite master composites.
A subsequent variability tetwork program was undertaken on the PQ3 diamond drill core to evaluate the metallurgical response of the FERP, PSAP+SAPL (upper saprolite), SAPL (lower saprolite) and SAPR weathering domains.
The flotation testwork on auger and diamond drill core samples demonstrated that generally between about 50% and 80% of the liberated flakes were larger than 150 µm, and that final overall concentrate grades were in the range of 97% to 99% Carbon.
The flake size distribution and purity are considered to be favourable for product marketability.
Property testing of final concentrates produced from the metallurgical tests were undertaken by a specialty laboratory in Germany indicate that the potential products from Malingunde should be suitable for expandable graphite markets.
Competent Person Statement
The information that relates to Mineral Resources is based on, and fairly represents, information compiled by Mr David Williams, a Competent Person, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Williams is employed by CSA Global Pty Ltd, an independent consulting company. Mr Williams has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Williams consents to the inclusion of the matters based on his information in the form and context in which it appears.
The information that relates to Exploration Results is extracted from announcements on 29 August 2016, 12 October 2016, 26 November 2016, 18 January 2017, 21 February 2017 and 15 March 2017. These announcements are available to view on www.sovereignmetals.com.au. The information in the original announcements that related to Exploration Results were based on, and fairly represents, information compiled by Dr Julian Stephens, a Competent Person who is a member of the Australasian Institute of Geoscientists (AIG). Dr Stephens is the Managing Director of Sovereign Metals Limited and a holder of shares, options and performance rights in Sovereign Metals Limited. Dr Stephens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.
Forward Looking Statement
This release may include forward-looking statements, which may be identified by words such as "expects", "anticipates", "believes", "projects", "plans", and similar expressions. These forward-looking statements are based on Sovereigns expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Sovereign, which could cause actual results to differ materially from such statements. There can be no assurance that forward-looking statements will prove to be correct. Sovereign makes no undertaking to subsequently update or revise the forward-looking statements made in this release, to reflect the circumstances or events after the date of that release.
Footnote 1
The Malingunde Mineral Resource is understood by the Company to be the largest known saprolite-hosted flake graphite deposit in the world that has been reported under recognised western Mineral Resource reporting codes (i.e. JORC, NI 43-101, SAMREC).
Appendix 1: JORC Code, 2012 Edition - Table 1
Section 1 Sampling Techniques and Data
Criter JORC Code Commentary
ia explanation
SampliNature and Hand Auger (HA), Air-core (AC) and
ng quality of Diamond core (DD) drilling form the
Techn sampling (e.g. basis of the Mineral Resource
iques cut channels, Estimate (MRE) and are described
random chips, below:
or specific
specialised HA drilling was employed to obtain
industry samples vertically
standard
measurement from surface at nominal 1-metre depth
tools intervals, with
appropriate to
the minerals samples composited on geologically
under determined intervals. Composite
investigation, samples were riffle split on
such as down site.
hole gamma HA drilling was completed as a number
sondes, or of phases during 2015 and 2016. A
handheld XRF total of
instruments,
etc.). These 212 HA holes (1,499 m) were used in
examples should the
not be taken as MRE
limiting the.
broad meaning AC drilling (angled and vertical) was
of employed to obtain bulk drill
sampling. cuttings at nominal 1-metre depth
(downhole) intervals from surface.
All 1-metre samples were collected in
plastic bags directly beneath the
sample cyclone underflow. The entire
individual 1-metre sample was
manually split at the drill site
using conventional riffle splitters.
A total of 170 AC holes (3,352 m)
completed during 2016 were used in
the
MRE
.
DD drilling (angled and vertical) was
designed to obtain representative
large diameter (PQ3) core for
geological, geotechnical and
metallurgical
testwork purposes. Subsequent to
completion of all geological and
geotechnical logging and sampling
(whole core samples removed
laboratory bulk density and strength
testing) drill core was either
manually hand split or sawn using a
circular saw and sampled as Œ PQ3
core. Upon completion of laboratory
bulk density and strength testing of
the whole core intervals the entire
core was submitted to the
laboratory.
A total of 13 DD holes (432.39 m)
completed during 2016 were used in
the
MRE
.
All HA/AC/DD assay sample splits were
submitted to either Intertek
Johannesburg or Intertek Perth for
assay sample preparation. Total
Graphitic Carbon (TGC) analysis of
all assay pulps samples was performed
by Intertek
Perth.
Include All HA/AC/DD drilling and sampling
reference to activities were supervised by a
measures taken suitably qualified Company geologist
to ensure who was present on site during the
sample drilling of holes. All
representivity anHA and AC holes were geologically
d the logged at a nominal 1-metre interval
appropriate by the geologist at the drill site.
calibration of
any measurement DD holes were geologically logged on a
tools or geological intervals basis.
systems Geotechnical logging was completed
used. for each core run interval. All mass
reduction (field and laboratory
splitting) of samples were performed
within
Gys Sampling Nomogram limits relevant
to this style of mineralisation.
Field duplicate splits of HA/AC
samples and quarter DD core were
undertaken nominally every
20
th sample to assess sampling errors.
HA: The auger spiral and rods are
cleaned between each metre of
sampling to avoid
contamination.
AC: The sampling cyclone was routinely
cleaned out between each drill
hole. Sample recovery was
quantitatively assessed throughout
the duration of the drilling program.
A program of field replicate splitting
of selected
(~5%) mineralised intervals was
completed at the conclusion of the
drill program to assess the sampling
repeatability
DD: core recovery was closely
monitored during drilling
particularly through the mineralised
zones. Standard industry drilling mud
mixtures were employed to improve
core recovery especially through the
softer upper clay rich
pedolith and saprolith horizons.
Aspects of the Flake graphite content is visually
determination estimated as volume % for each
of 1-metre HA/AC bulk drill samples and
mineralisation DD core logging interval during
that are geological logging by a Company
Material to the geologist.
Public Report.
In cases where A nominal lower cut-off of 4% TGC
industry assay has been applied to define
standard work zones of
has been done mineralisation
this would be.
relatively
simple (e.g.
reverse
circulation
drilling was
used to obtain
1 m samples
from which 3 kg
was pulverised
to produce a 30
g charge for
fire assay).
In other cases
more
explanation may
be required,
such as where
there is coarse
gold that has
inherent
sampling
problems.
Unusual
commodities or
mineralisation
types (e.g.
submarine
nodules) may
warrant
disclosure of
detailed
information.
DrilliDrill type (e.g. HA: drilling was performed manually by
ng core, reverse Sovereign
Techn circulation, employees
iques openhole using a conventional hand auger employ
hammer, rotary ing a combination of
air blast,
auger, Bangka, 62mm and 50mm diameter spiral auger
sonic, etc.) flight
and details and
(e.g. core 1-metre long steel rods. Each 1m of
diameter, drill advance
triple or
standard tube, is withdrawn and the contents of the
depth of auger flight removed. An additional
diamond tails, 1-metre steel
facesampling
bit or other rods is attached and the open hole is
type, whether re-entered to drill the next metre.
core is This is repeated until the drill
oriented and if holes is terminated or reaches a
so, by what maximum depth of 12m.
method,
etc.). The auger spiral and rods are cleaned
between each metre of sampling to
avoid
contamination.
AC: conventional blade bit aircore dril
ling was employed to obtain all drill
cuttings from surface. Drilling was
completed using a P900 truck mounted
rig with and separate truck mounted
air compressor. Drilling was completed
using standard 3-inch or 4-inch
diameter/3m length drill rods
equipped with inner tubes. Drilling
was performed with standard face
discharge
aircore blade bits. The nominal drill h
ole
diameter for 3-inch and 4-inch holes
is 85mm and 114mm respectively. The
nominal inner tube inside diameter
for 3-inch and 4-inch holes is 37mm
and 45mm respectively.
Drilling of all 3-inch holes employed
a 2-stage compressor rated at
300CFM
:200PSI run continuously on high
stage. All 4-inch holes were drilled
employing a 2-stage compressor rated
at
900CFM
:350PSI with high-stage generally run
below about 15m downhole.
DD: conventional wireline PQ triple
tube
(PQ
3) diamond drilling (DD) was employed
to obtain all drill
core. Drilling was undertaken with an
Atlas Copco Christensen CT14 truck
mounted drilling rig. The nominal
core diameter is 83mm and the nominal
hole diameter is 122mm. Coring was
completed with
appropriate diamond impregnated
tungsten carbide drilling bits. Drill
runs were completed employing either
a
1.5m or 3.0m length PQ3 core barrel. Co
re from all drilling runs was
orientated using a Reflex ACTIII
Electronic Orientation device. The
orientation and marking of the bottom
of
hole (BOH) orientation line along the
core was completed whilst the core
was still within the drilling split.
Core was transferred from the
drilling split into PVC splits which
were then wrapped with plastic
layflat material, securely sealed and
placed into core
trays.
Drill Method of HA: sample recovery was monitored
Sampl recording and visually during removal of the sample
e assessing core from the auger
Recov and chip sample flights.
ery recoveries and
results AC: sample recovery was recorded for
assessed. all holes. The
1-
metre drill samples collected in
plastic bags from directly beneath
the cyclone underflow were
individually weighed and moisture
content (dry/damp/moist
/wet/saturated) recorded prior to
further splitting and sampling. The
outside diameter of the drill bit
cutting face was measured and
recorded by the driller prior to the
commencement of each drill hole. Each
1-metre sample interval was
separately geologically logged using
standard Company project specific
logging codes. Logging of weathering
and lithology along with drill
hole diameter, recovered sample
weight, moisture content and dry bulk
density measurements of PQ diamond
core allow the theoretical sample
recovery to be assessed. Analysis of
the calculated sample recoveries
indicate an average recovery of
greater than 75% for all mineralised
(>=4% TGC)
intervals.
DD: drilling core recovery was
recorded for each drill run by
measuring the total length whilst
still in the drilling splits prior to
being transferred into core
trays
. Downhole depths were validated
against
core blocks and drill plods during
each shift.
Holes MGDD0001, MGDD0004 and MGDD0005
were re-drilled due to core loss
within a number of mineralised
zones.
An overall core recovery of 92% was
achieved for all
sampled core.
Measures taken HA: drill holes were terminated where
to maximise they intersected
sample recovery
and ensure the upper (perched) water table (approx
representative..
nature of the 7-8m)
samples.
AC: drill bit type (face discharge)
used were appropriate for the type of
formation to maximise amount of drill
cutting recovered. Drill bits were
replaced where excessive wearing
of the tungsten cutting teeth had
occurred.
Adequate CFM/PSI of compressed air was
used to maximise the drying of sample
prior to recovering up the drill
string. A
number
of the 2016 PQ diamond core holes
were twinned by
aircore holes to assess the representiv
ity
of AC drill samples. Where the
ingress of water in deeper sections
of holes resulted in wet samples
(usually at the
Saprolite/Saprock interface) the drill
hole was
terminated.
DD: core recovery was closely
monitored during drilling
particularly through the mineralised
zones. Standard industry drilling mud
mixtures were employed to improve
core recovery especially through the
softer upper clay rich material of
the
Pedolith and Saprolith zones. Other
measures such quantity of water,
amount of rotation and drill bit
types that are appropriate to soft
formation drilling were considered
and employed during drilling when
required. At the completion of each
drill run the steel splits containing
the core were pumped out of the
retrieved core tube. Core was then
carefully transferred from the drill
split into plastic sleeves
(
layflat) which were secured in rigid
PVC splits. The
layflat was securely bound and sealed
(to preserve moisture) with tape
prior to transferring PVC splits into
plastic core
trays.
Whether a Twin hole comparison of AC/HA and
relationship AC/DD drill hole
exists between
sample recovery TGC assay grades indicates that no
and grade and sample bias exists. There does not
whether sample appear to be any relationship between
bias may have sample recovery and the visual
occurred due to graphite
preferential content.
loss/gain of
fine/coarse
material.
LogginWhether core and HA/AC/DD: drill holes were geologically
g chip samples logged
have been by a suitably trained Company
geologically geologist using standard Company code
and system. All geological logging was
initially recorded using
geotechnically lo a
gged to a level standard A4 paper template and later
of detail to digitally entered into customised
support Company MS Excel spreadsheets
appropriate utilising functional validation
Mineral tools. Excel files are checked and
Resource loaded to MS Access by the Database
estimation Administrator. Upon loading into the
mining studies Access database further validation is
and performed.
metallurgical
studies. HA/AC: holes were geologically logged
nominally at 1-metre intervals.
Reference samples of each 1-metre
intervals were collected and stored
in plastic chip trays for future
reference.
DD: holes were logged on a geological
interval basis. In addition all holes
were
geotechnically logged by trained
Company geologists to ISRM standards.
DD holes MGDD0008-0013 were
geotechnecnically logged by a
consulting geotechnical engineer. All
drill
core was photographed prior to
sampling and images were digitally
catalogued.
This information is of a sufficient lev
el of detail to support appropriate
Mineral Resource
estimation
, preliminary mining studies and
metallurgical
testwork.
Whether logging Logging is both qualitative and quantit
is qualitative ative
or quantitative. Geological logging includes but is
in nature. Core not limited
(or costean, to
channel, etc.) lithological features, estimated
photography. graphite content
and flake characteristics. The logging
and reporting of visual graphite
percentages
(on a volumetric basis) is
semiquantitative. A reference to
previous logs and assays is used as a
guide. Geotechnical logging of DD core
is both qualitative and
quantitative.
The total length 100% of the HA/AC/DD drill hole sample
and percentage intervals
of the relevant have been geologically logged.
intersection
logged
Sub-saIf core, whether Quarter PQ3 DD core is manually split
mpling cut or sawn and and/or cut using a motorised diamond
techn whether blade core saw and sampled for
iques quarter, half laboratory
or all core analysis.
and taken.
sampl
e
prepa
ration
If non-core, HA: 1-metre samples are composited on
whether geological intervals and then riffle
riffled, tube split at 50:50 using a standard Jones
sampled, rotary riffle splitter. Wet samples are
split, etc. and first air dried and then manually
whether sampled broken up prior to compositing or
wet or splitting.
dry.
AC: Individual 1-metre drill samples we
re
manually split in entirety using
either a 3-tier (87.5:12.5) or single
tier (50:50) riffle splitter or a
combination thereof to facilitate
mass reduction of
the drill sample to produce an assay sp
lit
. Additional compositing of the assay
off-split was controlled by
geological logging. Mineralised (>=3%
visual TGC content) off-splits
obtained from the soil (SOIL),
ferruginous
pedolith (FERP) and mottled zone
(MOTT) weathering horizons were not
composited, whereas mineralised
splits of the underlying pallid
saprolite (PSAP), saprolite (SAPL)
and
saprock (SAPR) weathering units were
composited nominally at 2-metres.
Unmineralised (=<3% visual TGC)
1-metre splits were composited
nominally at 4-metres. All bulk
rejects splits of the original
1-metre intervals were
transported to a secure undercover
storage facility in
Lilongwe
.
All 1-metre wet samples were removed
from the drill site without splitting
and relocated to the Companys
premises in Lilongwe. The wet samples
were transferred into large metal
trays and sun dried. Samples were
subsequently manually broken up and
thoroughly homogenised prior to
splitting 50:50 with a single tier
riffle splitter. One
off-split
was submitted to the laboratory for
assay
. The other off-split (i.e. the
material not sent for assaying) of
each individual 1-metre interval were
returned to original sample bag,
cable tied and placed in storage for
future
reference.
For all sample HA samples: sample preparation is
types, the conducted at Interteks laboratory in
nature, quality Johannesburg. Each entire sample is
and crushed to nominal 100% -3mm in a
appropriateness Boyd crusher then pulverised to 85%
of the sample -75µm in a LM5. Approximately 100g
preparation pulp is collected and sent to
technique. Intertek Perth for TGC
analysis.
AC samples: sample preparation was
conducted at either Intertek in Perth
or Johannesburg. The entire submitted
sample (=< ~3kg) is pulverised to 85%
-75µm in a LM5. Approximately 100g
pulp is collected and sent to
Intertek-
Genalysis Perth for chemical analysis.
DD samples: all sample preparation was
conducted at Intertek Perth. Each
entire sample is crushed to nominal
100% -3mm in a Boyd crusher then
pulverised to 85% -75µm in a LM5.The
entire submitted sample (=< ~3kg) is
pulverised to 85% -75µm in a LM5.
Approximately 100g pulp is collected
and sent to
Intertek-
Genalysis Perth for chemical analysis.
Quality control HA/AC/DD: All sampling was carefully
procedures supervised. Ticket books were used
adopted for all with pre-numbered tickets placed in
sub-sampling the laboratory sample bag and double
stages to checked against the hardcopy sample
maximise register.
representivity of
samples. Field QC procedures involve the use of
certified reference material assay
standards, blanks, duplicates,
replicates for company QC measures,
and laboratory standards, replicate
assaying and barren washes for
laboratory QC measures. The insertion
rate of each of these averaged better
than 1 in
20.
Measures taken All mass reduction (field and
to ensure that laboratory splitting) of samples were
the sampling is performed within
representative
of the in situ Gys Sampling Nomogram limits relevant
material to this style of mineralisation.
collected, Field duplicate splits of HA/AC
including for samples and quarter DD core were
instance undertaken nominally every 20th
results for sample to assess sampling
field errors.
duplicate/second A program of field replicate splitting
-half of selected
sampling. (
~10%) mineralised AC intervals was
completed at the conclusion of the
drill program. In addition, a number
of air core holes were drilled to
twin existing HA and DD holes, to
assess the
representivity of the AC drill
samples. The results of these
programs
indicate
there are no significant sampling
errors.
Whether sample All mass reduction of HA/AC/DD drill
sizes are samples undertaken during field
appropriate to sampling and laboratory sample
the grain size preparation were guided by standard
of the material sampling nomograms and fall within
being
sampled. Gys safety limits for the style of
mineralisation being
sampled.
QualitThe nature, The analytical and laboratory
y of quality and procedures are considered to be
assay appropriateness appropriate for reporting graphite
data of the assaying mineralisation, according to industry
and and laboratory best practice.
labor procedures used
atory and whether the
tests technique is Each entire sample was pulverised to
considered 85% -75µm. Approximately 100g pulp is
partial or col
total. lected for analysis at Intertek Perth.
A sample of 0.2g is removed from the
100 gram pulp, first digested in
HCl to remove carbon attributed to
carbonate, and is then heated to
450°C to remove any organic carbon.
An
Eltra CS-2000 induction furnace
infra-red CS analyser is then used to
determine the remaining carbon which
is reported as Total Graphitic Carbon
(TGC) as a
percentage.
For geophysical No non-laboratory devices were used
tools, for
spectrometers,
handheld XRF chemical analysis.
instruments,
etc., the
parameters used
in determining
the analysis
including
instrument make
and model,
reading times,
calibrations
factors applied
and their
derivation,
etc.
Nature of Field QC procedures involve the use of
quality control certified reference
procedures material
adopted (e.g. (CRM) assay standards, blanks,
standards, duplicates
blanks, and replicates for company QC
duplicate, measures, and laboratory standards,
external rep
laboratory eat assaying and barren washes for
checks) and laboratory QC measures. The insertion
whether rate of each of these averaged better
acceptable than 1 in
levels of 20.
accuracy (i.e. Performance of the primary laboratory
lack of bias) across all assay batches
and precision were
have been within acceptable tolerance levels
established. and that there is no appreciable
bias.
VerifiThe verification Significant mineralisation
cation of significant intersections were verified by
of intersections alternative company
sampl by either personnel.
ing & independent or An independent resource consultant
assay alternative conducted a site visit during
ing company December 2016 during the AC drilling
personnel. program. All drilling and sampling
procedures were observed by the
consultant during the site
visit.
The use of A number of AC holes were drilled to
twinned twin existing
holes.
HA and DD holes as verification of
sampling and
assaying
.
Documentation of All data is initially collected on
primary data, paper logging sheets and codified to
data entry the Company's templates. This data
procedures, was hand entered to spreadsheets and
data validated by Company geologists.
verification, This data was then imported to a
data storage Microsoft Access Database then
(physical and validated
electronic)
protocols. both electronically and manually. Assay
data is provided as.csv files from
the laboratory and loaded into the
project specific drill
hole database. Spot checks are made
against the laboratory
certificates.
Discuss any No adjustments have been made to assay
adjustment to data.
assay data.
LocatiAccuracy and HA/AC/DD
on of quality of All collars have been picked-up by the
data surveys used to Companys consulting
point locate drill
s holes (collar surveyor, using a Leica GPS System
and down-hole 1200 in RTK mode to define the
surveys), drill-hole collar coordinates to
trenches, mine centimetre
workings and accuracy.
other locations
used in Mineral Down-hole surveying of all DD holes
Resource was undertaken on selected holes to
estimation. determine drill
hole deviation. Surveys were carried
out using a Reflex
Ez-Trak multi-shot survey tool at
nominal 30m intervals. Downhole
surveying using the same method was
also completed for selected AC holes.
Results indicate that no significant
deviation occurs over the relatively
short length of the AC holes. HA
holes were drilled to a maximum depth
of 12 and were not downhole
surveyed.
Specification of WGS84 (GRS80) UTM Zone 36 South
the grid system
used.
Quality and The Companys consulting surveyor used
adequacy of a Leica
topographic
control. DGPS System 1200 in RTK mode to
accurately locate the x, y, z of
drill
collars.
Previous checking of Hand Auger holes
with the Shuttle Radar Topographic
Mission (SRTM) 1-arc second digital
elevation data has shown that the
Leica GPS System produces
consistently accurate
results.
Given the low topographic relief of
the area it is believed that this
represents high quality
control.
Data Data spacing for HA: drill holes are located across the
spaci reporting of entire strike and width of the
ng & Exploration modelled deposit with spacing on a
distr Results. nominal 200m x 20m spacing with
ibutio infill of 10m along
n section.
AC: drill holes were generally drilled
at 200m x 20m along existing HA
transects with infill of 100m x 20m
over the northern and southern areas
of the
deposit.
DD: holes were drilled on existing HA
transects spaced between 200 and 400m
along the strike extent of the
deposit between 8,435,400mN to
8,437,200mN.
Whether the data The data spacing is sufficient for the
spacing and estimation of a Mineral Resource (see
distribution is Section 3 of JORC Table
sufficient to 1)
establish the
degree of
geological and
grade
continuity
appropriate for
the Mineral
Resource and
Ore Reserve
estimation
procedure(s)
and
classifications
applied.
Whether sample No sample compositing has occurred.
compositing has
been
applied.
OrientWhether the No bias attributable to orientation of
ation orientation of sampling upgrading of results has
of sampling been
data achieves identified.
in unbiased
relat sampling of
ion possible
to structures and
geolo the extent to
gical which this is
struc known
ture considering the
deposit
type
If the No bias attributable to orientation of
relationship sampling upgrading of results has
between the been
drilling identified.
orientation and Flake graphite mineralisation is
the orientation conformable with the main primary
of key layering of the gneissic and
mineralised schistose host lithology.
structures is
considered to
have introduced
a sampling
bias, this
should be
assessed and
reported if
material.
SampleThe measures Samples are securely stored at the
secur taken to ensure Companys compound in Lilongwe. Chain
ity sample of custody is maintained from time of
security sampling in the field until sample is
dispatched to the
laboratory.
AuditsThe results of It is considered by the Company that
or any audits or industry best practice methods have
revie reviews of been employed at all stages of the
ws sampling exploration.
techniques and
data
Section 2 Reporting of Exploration Results
Criter JORC Code Commentary
ia explanation
MineraType, reference The Company owns 100% of 3 Exclusive
l name/number, Prospecting Licences (EPLs) in
tenem location and Malawi. EPL0355 granted in 2015 for
ent & ownership 2 years, EPL0372 granted in 2016 for
land including 2 years, EPL0413 granted in 2014 for
tenur agreements or 3 years. All EPLs are renewable for
e material issues two additional periods of 2 years
statu with third each upon
s parties such as expiry.
joint ventures, All drilling was located on EPL0372.
partnerships,
overriding
royalties,
native title
interests,
historical
sites,
wilderness or
national park
and environment
settings.
The security of The tenements are in good standing and
the tenure held no known impediments to exploration
at the time of or mining
reporting along exist.
with any known
impediments to
obtaining a
licence to
operate in the
area.
ExplorAcknowledgement No other parties were involved in
ation and appraisal exploration
done of exploration.
by by other
other parties.
parti
es
GeologDeposit type, The graphite mineralisation occurs as
y geological multiple bands of graphite gneisses,
setting and hosted within a broader Proterozoic
style of
mineralisation paragneiss package. In the Malingunde a
nd
Lifidzi areas specifically, a deep
topical weathering profile is
preserved, resulting in significant
vertical thicknesses from near
surface of
saprolite-hosted graphite
mineralisation.
Drill A summary of all No new exploration results are
hole information included in this
infor material to the release.
mation understanding
of the
exploration
results
including a
tab
ulation of the
following
information for
all Material
drill holes:
easting and
northings of
the drill hole
collar;
elevation or RL
(Reduced
Level-elevation
above sea level
in metres of
the drill hole
collar); dip
and azimuth of
the hole; down
hole length
a
nd interception
depth; and hole
length
If the exclusion All drill holes within the resource
of this area have previously been reported in
information is releases to the ASX providing collar
justified on easting, northing, elevation, dip,
the basis that azimut
the information h, length of hole, and mineralised
is not Material intercepts as
and this encountered.
exclusion does
not detract
from the
understanding
of the report,
the Competent
Person should
clearly explain
why this is the
case
Data In reporting No new exploration results are
aggre Exploration included in this release. All drill
gation Results, holes within the resource area have
metho weighting previously been
ds averaging reported.
techniques,
maximum and/or
minimum grade
truncations
(e.g. cutting
of
high-grades) and
cut-off grades
are usually
Material and
should be
stated.
Where aggregate No new exploration results are
intercepts included in this release. All drill
incorporate holes within the resource area have
short lengths previously been
of reported.
high-grade result
s and longer
lengths of low
grade results,
the procedure
used for such
aggregation
should be
stated and some
typical
examples of
such
aggregations
should be shown
in
detail.
The assumptions No metal equivalent values are used in
used for any this
reporting of report.
metal
equivalent
values should
be clearly
stated.
RelatiThese Preliminary interpretation of
onship relationships mineralised zones in
betwe are
en particularly aircore holes supported by DD (2016)
miner important in orientated core measurements suggests
alisat the reporting that mineralised zones are
ion of Exploration shallow-moderate east
width Results. dipping.
s &
inter
cept
lengt
hs
If the geometry Flake graphite mineralisation is
of the conformable with the main primary
mineralisation layering of the gneissic and
with respect to schistose host
the drill litholog
y. AC drill hole inclination of -60
hole angle is degrees are
known, its generally
nature should near orthogonal to the regional dip
be of the host units and dominant
reported. foliation
and hence specific drill hole
intercepts for -60 degree holes may
only approximate true width. The
averaged
st
rike of mineralised zones is
approximately
16
0° grid whereas all -60 inclined aircor
e
holes were orientated at grid east.
If it is not Not Applicable, refer to explanation
known and only directly
the down hole above.
lengths are
reported, there
should be a
clear statement
to this effect
(e.g. 'down
hole length,
true width not
known'.
DiagraAppropriate maps See Figures 1 and 2 within the main
ms and sections text of this
(with scales) report.
and tabulations
of intercepts
should be
included for
any significant
discovery being
reported. These
should include,
but not be
limited to a
plan view of
the drill
collar
locations and
appropriate
sectional
views.
BalancWhere No new exploration results are
ed comprehensive included in this release. All drill
repor reporting of holes within the resource area have
ting all Exploration previously been
Results is not reported.
practicable,
representative
reporting of
both low and high
-grade
s and/or widths
should be
practiced to
avoid
misleading
reporting of
exploration
results.
Other Other No additional meaningful and material
subst exploration exploration data has been excluded
antive data, if from this report that has not
explo meaningful and previously been reported to the
ration material, ASX.
data should be
reported
including (but
not limited to:
geological
observations;
geophysical
survey results;
geochemical
survey results;
bulk samples -
size and method
of treatment;
metallurgical
test results;
bulk density,
groundwater,
geotechnical
and rock
characteristics;
potential
deleterious or
contaminating
substances.
FurtheThe nature and The next phase of exploration is to
r scale of complete additional resource infill,
work planned further extensional and step-out
work (e.g. test
for lateral Aircore/ Reverse Circulation drilling.
extensions or
depth
extensions or
large-scale
step-out
drilling).
Diagrams clearly See Figure 2 within the main text of
highlighting this
the areas of report.
possible
extensions,
including the
main geological
interpretations
and future
drilling areas,
provided this
information is
not
commercially
sensitive.
Section 3 Estimation and Reporting of Mineral Resources
Criteri JORC Code Commentary
a explanation
DatabasMeasures taken Data used in the Mineral Resource
e to ensure that estimate is was sourced from an MS
integr data has not Access database. The database is
ity been corrupted maintained by
by, for Sovereign.
example,
transcription Relevant tables from the database
or keying were exported to csv format, and
errors, then imported into
between its
initial Datamine Studio RM software for use
collection and in the Mineral Resource
its use for estimate.
Mineral
Resource
estimation
purposes.
Data validation Validation of the data import include
procedures checks for overlapping intervals,
used. missing survey data, missing assay
data, missing lithological data, and
missing
collars.
Site Comment on any The Competent Person (Mineral
visits site visits Resources) visited the project in
undertaken by December
the Competent 2016.
Person and the The aircore drilling rig was in
outcome of operation and the Competent Person
those reviewed drilling and
visits. sampling
procedures.
Planned drill sites were examined and
assessed with respect to strike and
dip of the interpreted geological
model. Sample storage facilities
were inspected. Discussions were
held with the Sovereign geological
staff regarding all drilling and
sampling procedures and outcomes.
Selected diamond drill core was
inspected, with all weathering types
pertinent to the Mineral Resource
reviewed. There were no negative
outcomes from any of the above
inspections, and all samples and
geological data were deemed fit for
use in the Mineral Resource
estimate.
If no site Not applicable, site visit was
visits have undertaken.
been
undertaken
indicate why
this is the
case.
GeologiConfidence in There is a reasonably high level of
cal (or confidence in the geological
interp conversely, interpretation, based upon
retatio the lithological logging of diamond
n uncertainty drill core,
of) the
geological aircore chip samples and hand auger
interpretation samples.
of the mineral
deposit. Multi-spectral satellite imagery and
airborne
g
eophysical data provided guidance for
the strike continuity of the
deposit.
Drill hole intercept logging and
assay results
(
aircore, hand auger and diamond
core), structural interpretations
from drill core and geological logs
of
aircore and hand auger drill data
have formed the basis for the
geological interpretation. The
drilling mostly targeted the
SAPL and SAPR weathering horizons,
with limited sampling below the
upper level of the fresh
rock
(FRESH) domain.
Nature of the Assumptions were made on depth and
data used and strike extension of the gneiss,
of any using drill
assumptions
made. hole assays as anchor points at depth
and at intervals along strike.
Geological mapping also supports the
geological
model.
Seven weathering domains were
modelled and support the grade
interpolation and Mineral Resource
classification.
The effect, if No alternative interpretations were
any, of considered because the geophysical
alternative models and diamond core support the
interpretations current
on Mineral interpretation.
Resource
estimation.
The use of Graphitic Graphite mineralisation is
geology in hosted within a graphitic gneiss,
guiding and which is mapped along
controlling
Mineral its strike length within the project
Resource area and within the license area.
estimation. Grade (total graphitic carbon,
TGC%) is assumed to be likewise
continuous with the host rock unit.
Mineralised waste and non-mineralised
waste zones were modelled within the
graphitic
gneiss.
The factors The graphitic gneiss is open along
affecting strike and down
continuity dip.
both of grade
and The interpretation of the
geology. mineralisation domains is based upon
a pre-determined lower cut-off grade
for TGC, which is equivalent to the
graphitic gneiss domain boundary. A
variation to the cut-off grade will
affect the volume and average grade
of the domains, however there are no
geological reasons identified to
date to support higher grade TGC
domains within the graphitic
gneiss.
DimensiThe extent and Malingunde mineralised bodies strikes
ons variability of north west, dipping between 25° and
the Mineral 50 degrees° to the north east. It is
Resource currently modelled as three zones of
expressed as mineralisation, with a depth extent
length (along of 50 m, a strike length of 4,500 m
strike or and a plan width varying between 50
otherwise), m and 230
plan width, m.
and depth
below surface
to the upper
and lower
limits of the
Mineral
Resource.
EstimatThe nature and Datamine Studio RM software was used
ion appropriateness for all geological
and of the
modell estimation modelling, block modelling, grade
ing technique(s) interpolation, Mineral Resource
techni applied and classification and reporting.
ques key
assumptions, GeoAccess Professional and Snowden
including Supervisor (V8.7) were used for
treatment of geostatistical analyses.
extreme grade
values,
All samples were composited to 2 m
domaining, intervals. All drill
interpolation
parameters and hole assay data (diamond, aircore and
maximum hand auger) were utilised in the
distance of grade interpolation.
extrapolation
from data
points. If a A block model with parent cell sizes
computer 25 m (E) x 50 m (N) x 5 m (RL) was
assisted constructed for
estimation
method was Malingunde, compared to typical drill
chosen include spacing of 50 m x 100 m.
a description
of computer
software and Grade estimation was by ordinary
parameters kriging (OK) with inverse distance
used. squared (IDS) estimation run as a
check estimate. A minimum of 8 and
maximum of 16 composited samples
were used in any one block estimate
for all domains. A maximum of 5
composited samples per drill hole
were used in any one block estimate.
Cell discretisation of 3 x 3 x 3 was
used. The pallid
saprolite, saprolite, saprock and top
of fresh rock domain (pseudo
transitional material) were combined
into one estimation
domain.
The Inverse distance squared (IDS)
availability estimation
of check
estimates, was run as a check estimate of the ord
previous inary kriging (OK)
estimates
and/or mine grade estimation. No depletion of the
production Mineral Resource due to mining
records and activity was required due to no
whether the mining having occurred historically.
Mineral This Mineral Resource is the maiden
Resource MR reported for
estimate takes
appropriate Malingunde.
account of
such
data.
The assumptions No by-products were modelled.
made regarding
recovery of
by-products.
Estimation of No estimation of deleterious elements
deleterious or non-grade variables of economic
elements or significance were
other modelled.
non-grade
variables of
economic
significance
(e.g. sulphur
for acid mine
drainage
characterisatio
n).
In the case of Grade estimation was by ordinary
block model kriging (OK) with inverse distance
interpolation, squared (IDS) estimation run as a
the block size check estimate. A minimum of 8 and
in relation to maximum of 16 composited samples
the average were used in any one block estimate
sample spacing for all domains. A maximum of 5
and the search composited samples per drill hole
employed. were used in any one block estimate.
Cell discretisation of 3 x 3 x 3 was
used. The pallid
saprolite, saprolite, saprock and top
of fresh rock domain (pseudo
transitional material) were combined
into one estimation
domain. The ferruginous pedolith (FERP
)
and mottled zone (MOTT) were
combined into a separate estimation
domain.
Any assumptions No selective mining units were
behind assumed in this
modelling of model.
selective
mining
units.
Any assumptions TGC grade was the only variable
about estimated.
correlation
between
variables.
Description of TGC interpretations were based upon a
how the lower cut-off of 4% TGC, which is
geological equivalent to the graphitic gneiss
interpretation domain boundary, from logging of
was used to diamond drill core and
control the
resource aircore chips.
estimates. The Mineral Resource block model
consists of 3 zones of TGC
mineralisation, with 1 major zone
and 2 minor zones, with respect to
strike extent. Mineralisation
domains were encapsulated by means
of 3D
wireframed envelopes. Domains were
extrapolated along strike or down
plunge to half
a section spacing. Waste domains
(total=31) were modelled within the
graphitic gneiss envelopes to excise
barren zones of gneiss.
Discussion of Top cuts were not used to constrain
basis for extreme grade values because the TGC
using or not grade distribution did not warrant
using grade their
cutting or use.
capping.
The process of The grade model was validated by 1)
validation, creating slices of the model and
the checking comparing to drill hole samples on
process used, the same slice; 2) swath plots
the comparison comparing average block grades with
of model data average sample grades on nominated
to drill hole easting, northing and RL slices; 3)
data, and use mean grades per domain for estimated
of blocks and flagged drill hole
reconciliation samples; and 4) cross sections with
data if block model and drill hole data
available. colour coded in like manner. No
reconciliation data exists to test
the model.
MoisturWhether the Tonnages are estimated on a dry basis.
e tonnages are
estimated on a
dry basis or
with natural
moisture, and
the method of
determination
of the
moisture
content.
Cut-offThe basis of Visual analysis of the drill
parame the adopted analytical results demonstrated that
ters cut-off the lower cut-off interpretation of
grade(s) or 4% TGC corresponds to a natural
quality break in the grade population
parameters distribution.
applied.
The lower cut-off of 4% TGC is
approximately equivalent to the
graphitic gneiss domain boundary,
from logging of diamond drill core
and
aircore chips.
Mining Assumptions It is assumed the deposit, if mined,
factor made regarding will be developed using open pit
s or possible mining methods. No assumptions have
assump mining been made to date regarding minimum
tions methods, mining widths or
minimum mining dilution.
dimensions and
internal (or, The largest mineralisation domains in
if applicable, plan
external) view have an apparent width of up to
mining 250 m which may result in less
dilution. It selective mining methods, as opposed
is always to (for example) mining equipment
necessary as that would need to be used to mine
part of the narrow veins in a gold
process of mine.
determining
reasonable
prospects for
eventual
economic
extraction to
consider
potential
mining
methods, but
the
assumptions
made regarding
mining methods
and parameters
when
estimating
Mineral
Resources may
not always be
rigorous.
Where this is
the case, this
should be
reported with
an explanation
of the basis
of the mining
assumptions
made.
MetalluThe basis for Sovereign have announced several
rgical assumptions or sets of metallurgical results to
factor predictions the market (7th September 2016;
s or regarding 23rd November 2016; 27th February
assump metallurgical 2017 and 20th March 2017), relating
tions amenability. to flake size distribution and
It is always purity of graphite concentrate.
necessary as Sovereign are continuing with
part of the further test
process of work.
determining
reasonable Sovereign engaged SGS Canada to
prospects for conduct an initial bench scale
eventual laboratory flotation
economic
extraction to testwork program on drill samples
consider obtained from the
potential
metallurgical Malingunde flake graphite deposit.
methods, but The main objective was to
the investigate the metallurgical
assumptions response of shallow
regarding
metallurgical saprolitic mineralization and the test
work
treatment was performed on composites from
processes and fifteen drill holes of which most
parameters are located in the northern part of
made when the
reporting
Mineral deposit.
Resources may The majority of the testwork was
not always be performed using two master composite
rigorous. samples described as north
Where this is composite and southern composite
the case, this from shallow auger drill samples.
should be The
reported with
an explanation testwork was largely based on the
of the basis flowsheet previously developed for
of the weathered material from Sovereigns
metallurgical
assumptions Duwi graphite deposit.
made. The flotation testwork on auger and
diamond drill core samples
demonstrated that generally between
about 50% and 80% of the liberated
flakes were larger than 150 µm, and
that final overall concentrate
grades were in the range of 97% to
99% Carbon.
The flake size distribution and
purity are considered by the
Competent Person (industrial
minerals) to be favourable for
product marketability.
Property testing conducted at a
specialty
laboratory in Germany indicates that
the potential products from
Malingunde should be suitable for
expandable graphite
markets.
The Competent Person recommends
additional variability flotation
testing to investigate different
geological and weathering domains
and to improve confidence in product
quality across the
deposit.
EnvironAssumptions A large portion of the Mineral
mental made regarding Resource is confined to the
factor possible waste
s or and process saprolitic weathering domains, and
assump residue any
tions disposal
options. It is sulphide minerals have been oxidised i
always n the geological past. Therefore acid
necessary as mine-drainage is not anticipated to
part of the be a significant risk when mining
process of from the
determining
reasonable oxidised domain. Acid-mine drainage
prospects for would be considered if mining of the
eventual fresh-rock domain was to be
economic undertaken in the
extraction to future.
consider the
potential No major water courses run through
environmental the resource area, although a fresh
impacts of the water dam is located at the southern
mining and end of the deposit, which may
processing continue along strike under the
operation. water body. No Mineral Resources are
While at this reported within the dam
stage the limits.
determination
of potential The Malingunde deposit is located
environmental within a farming area and has
impacts, villages located along the strike of
particularly the deposit. Sovereign holds regular
for a discussions with local landholders
and community groups to keep them
greenfields proj well informed of the status and
ect, may not future planned directions of the
always be well project.
advanced, the
status of Malingunde is in a sub-equatorial
early region of Malawi and is subject to
consideration heavy seasonal rainfall, with rapid
of these growth of vegetation in season.
potential
environmental
impacts should
be reported.
Where these
aspects have
not been
considered
this should be
reported with
an explanation
of the
environmental
assumptions
made.
Bulk Whether assumed Density was calculated from 69
densit or determined. billets of core taken from across
y If assumed, the deposit, with density measured
the basis for using wax coated
the
assumptions. immersion method performed by
If determined, Intertek Perth. Density data was
the method loaded into a
used, whether
wet or dry, Datamine drill hole file, which was
the frequency flagged against weathering horizons
of the and mineralisation domains.
measurements,
the nature,
size and
representativen
ess of the
samples.
The bulk All bulk density determinations were
density for completed by the waxed immersion
bulk material method.
must have been
measured by
methods that
adequately
account for
void spaces
(vughs,
porosity,
etc.),
moisture and
differences
between rock
and alteration
zones within
the
deposit.
Discuss An average density value of 1.7 t/m3
assumptions was determined for the soil domain,
for bulk 1.8 t/m3 for the ferruginous
density
estimates used pedolith (FERP) domain, 1.8 t/m3 for
in the the mottled
evaluation
process of the zone (MOTT) domain, 2.0 t/m3 for the
different pallid
materials.
saprolite (PSAP) domain, 2.0 t/m3 for
the
saprolite (SAPL) domain, and 2.2 t/m3
or 2.3 t/m3 for the
saprock (SAPR) rock profile,
dependent upon the depth of the
profile. A value of
2.4 t/m3 or 2.7 t/m3 was assigned to
the transitional / fresh rock
profile, dependent upon the depth of
the profile. A small data population
did not allow for discernible
differences in density between the
waste and mineralisation zones to be
determined.
ClassifThe basis for Classification of the Mineral
ication the Resource estimates was carried out
classification taking into account the geological
of the Mineral understanding of the deposit,
Resources into quality of the samples, density data
varying and drill hole spacing, supported by
confidence metallurgical test results that
categories. indicate general product
marketability.
The Mineral Resource is classified as
a combination of Indicated and
Inferred, with geological evidence
sufficient to assume geological and
grade continuity in the Indicated
volumes.
Whether All available data was assessed and
appropriate the competent persons relative
account has confidence in the data was used to
been taken of assist in the classification of the
all relevant Mineral
factors (i.e. Resource.
relative
confidence in
tonnage/grade
estimations,
reliability of
input data,
confidence in
continuity of
geology and
metal values,
quality,
quantity and
distribution
of the
data).
Whether the The current classification assignment
result appropriately reflects the Competent
appropriately Persons view of the
reflects the deposit.
Competent
Persons view
of the
deposit
Audits The results of No audits or reviews of the current
or any audits or Mineral Resource estimate have been
review reviews of undertaken, apart from internal
s Mineral reviews carried out by CSA Global
Resource and
estimates. Sovereign.
DiscussWhere An inverse distance estimation
ion of appropriate a algorithm was used in parallel with
relati statement of the ordinary
ve the relative
accura accuracy and kriged interpolation, with results
cy/ confidence very
confid level in the similar.
ence Mineral
Resource No other estimation method or
estimate using geostatistical analysis has been
an approach or performed.
procedure
deemed
appropriate by Relevant tonnages and grade above
the Competent nominated cut-off grades for TGC are
Person. For provided in the introduction and
example, the body of this report. Tonnages were
application of calculated by filtering all blocks
statistical or above the cut-off grade and
geostatistical sub-setting the resultant data into
procedures to bins by mineralisation domain. The
quantify the volumes of all the collated blocks
relative were multiplied by the dry density
accuracy of value to derive the tonnages. The
the resource graphite metal values (g) for each
within stated block were calculated by multiplying
confidence the TGC grades (%) by the block
limits, or, if tonnage. The total sum of all metal
such an for the deposit for the filtered
approach is blocks was divided by 100 to derive
not deemed the reportable tonnages of graphite
appropriate, a metal.
qualitative
discussion of
the factors
that could
affect the
relative
accuracy and
confidence of
the
estimate.
The statement The Mineral Resource is a local
should specify estimate, whereby the drill
whether it
relates to hole data was geologically domained ab
global or ove nominated TGC cut-off grades,
local resulting in fewer drill hole
estimates, samples to interpolate the block
and, if local, model than the complete drill hole
state the dataset, which would comprise a
relevant global
tonnages, estimate.
which should
be relevant to
technical and
economic
evaluation.
Documentation
should include
assumptions
made and the
procedures
used.
These No production data is available to
statements of reconcile model
relative results.
accuracy and
confidence of
the estimate
should be
compared with
production
data, where
available.
Die englische Originalmeldung finden Sie unter folgendem Link:
http://www.irw-press.at/press_html.aspx?messageID=39475
Die übersetzte Meldung finden Sie unter folgendem Link:
http://www.irw-press.at/press_html.aspx?messageID=39475&tr=1
NEWSLETTER REGISTRIERUNG:
Aktuelle Pressemeldungen dieses Unternehmens direkt in Ihr Postfach:
http://www.irw-press.com/alert_subscription.php?lang=de&isin=AU000000SVM6
Mitteilung übermittelt durch IRW-Press.com. Für den Inhalt ist der Aussender verantwortlich.
Kostenloser Abdruck mit Quellenangabe erlaubt.
Wenn Sie mehr über das Thema Aktien erfahren wollen, finden Sie in unserem Ratgeber viele interessante Artikel dazu!
Jetzt informieren!
Nachrichten zu Sovereign Metals LimitedShsmehr Nachrichten
Keine Nachrichten verfügbar. |
Analysen zu Sovereign Metals LimitedShsmehr Analysen
Aktien in diesem Artikel
Sovereign Metals LimitedShs | 0,44 | -1,34% |